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A multidimensional hybrid simulation model has been developed for use in studying 
plasma phenomena on extended time and distance scales. The model makes fundamental 
use of the small Debye length or quasineutrality assumption. The ions are modeled by 
particle-in-cell techniques, while the electrons are considered a collision-dominated fluid. 
Some electron inertial effects are retained. The fields are calculated in the nonradiative 
Darwin limit. The quasineutral counterpart of Poisson’s equation is obtained by first 
summing the electron and ion momentum equations and then taking the quasineutral limit. 
The resulting elliptic equation correctly includes those electrostatic potentials which occur 
in sheath or ambipolar phenomena while neglecting the short-range electrostatic fields 
which give rise to plasma oscillations. This model has been implemented in a two-dimen- 
sional code QN2. A lower hybrid drift unstable equilibrium with parameters accessible to 
both hybrid and full-particle simulation has been selected as a test of the code and a de- 
monstration of the model. Initial results indicate quite good agreement between the two 
simulation methods in linear growth rate and wave number. 

1. INTRODUCTION 

Plasmas of interest in thermonuclear research are often characterized by parameters 
which lie intermediate between those which make a magnetohydrodynamic (MHD) 
model adequate and those which demand a full Vlasov treatment. In this hybrid 
regime, the density, temperatures, and magnetic field are such that the ions are 
essentially collisionless and have trajectories in position space which cause them to 
experience large variations in both electromagnetic fields and density; this requires a 
Vlasov treatment of the ions. On the other hand, the electrons may experience orders 
of magnitude more collisions than do the ions or have relatively small Larmor orbits. 
The electron behavior may then be adequately modeled by treating electrons as a 
collision-dominated thermal fluid. The application of MHD models or full Vlasov 
models in this regime will be with questionable validity for MHD models and excessive 
computational cost for full Vlasov models. 

Several techniques, both analytical and numerical, have been proposed to model 
plasma behavior in this hybrid parameter regime. These fall into two classes depending 
on which of the two small quantities in the hybrid plasma regime is chosen as the 
expansion parameter. One approach assumes that the electron Larmor radius ree is 
vanishingly small compared to scale lengths of interest. This is the premise of electron 
guiding center models [I] as well as the drift-kinetic analytic model of D’fppolito and 
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Davidson [2]. Such methods are naturally well suited to low+ plasma phenomena in 
which strong magnetic fields insure the validity of the small rce assumption. Limita- 
tions are encountered, however, when approaching zero magnetic field in a high-j5 
plasma. 

The second general method used to develop a hybrid model is to assume that the 
Debye length AD is small compared to other scale lengths of interest in the problem. 
The assumption of small A, is equivalent to assuming quasineutrality since plasmas 
deviate from charge neutrality only on distance scales small compared to a Debye 
length. The Vlasov-fluid model of Freidberg [3] features a fully kinetic treatment of 
the ions coupled with a massless, cold, neutralizing electron fluid which moves 
according to the prescription E = u, x B. This model has been used primarily to 
ascertain the finite Larmor radius stabilization of global MHD modes [4, 51. Gerwin 
has extended the model to include finite electron temperature effects [6]. 

Quasineutral hybrid plasma models have been the bases of several quite productive 
one-dimensional simulation codes. While early treatments of o-pinch implosions 
used full fluid codes [7, 81, the importance of ion reflection in such implosions was 
recognized; proper treatment of this phenomenon requires a Vlasov treatment of the 
ions. Nielson and Sgro [9] developed a one-dimensional hybrid code which uses a 
particle-in-cell technique for the ions coupled with a massless electron fluid to study 
the behavior of a variety of implosion-heated devices. Hamasaki and Krall [IO] have 
also developed and applied a one-dimensional hybrid model which treats implosion 
phenomena in high-p e-pinches. The earliest two-dimensional hybrid code implement- 
ing a quasineutral model was reported by Shonk and Morse [I I]. Recently, Byers 
et al. [12] have developed a quasineutral hybrid model which has been applied in one 
dimension and is intended for two-dimensional applications. 

Each of these codes makes fundamental use of zero mass electrons in the field 
calculation. The essential feature of hybrid codes exploiting the small electron mass 
condition is that in this limit the electron momentum equation can be used in com- 
bination with Maxwell’s equations as part of the field calculation. The electron 
current is then deduced from the most recently calculated fields; only the ion compo- 
nent of the current explicitly contributes to the field-equation source terms. 

Previous hybrid codes retaining electron inertia in one dimension have been 
described by Forslund and Freidberg [13], who applied their code to the study of 
collisionless shocks and to e-pinch implosions, and by Liewer [14], whose code was 
used to study the ion-ion streaming instability in an imploding pinchlike plasma. The 
hybrid model described here is the multidimensional generalization of these models. 
It makes use of quasineutrality and retains some aspects of finite electron mass. The 
transverse or divergence-free part of the electron current remains a fundamental part 
of the time integration scheme. The retention of finite electron mass allows this model 
to display many phenomena which require finite electron cyclotron frequency. In 
addition, for those applications with small electron-ion collision frequency, sheaths 
comparable in thickness to the collisionless skin depth c/w~,, may be studied. 

The electron representation in our model is based on the assumed ordering of 
collision frequencies v,, > v,, > vii so that the electron component can be treated as a 
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collision-dominated thermal fluid while the ions are represented by the collisionless 
particle-in-cell technique. The fields are calculated in the radiationless Darwin limit 
[I 5]-an instantaneous propagation model in which the Lagrangian is correct to 
order (U/C)“. The time integration algorithm can therefore follow the traditional 
method of advancing the plasma source terms and then calculating the instantaneous 
electric and magnetic fields consistent with these sources. 

Several new techniques have been developed for this multidimensional synthesis of 
hybrid and Darwin models [16, 171. The most important requirement was that high- 
frequency electron plasma oscillations not be followed in detail, thus allowing the 
maximum time step to be much larger than 0;:. This feature implies that the strong 
coupling between the longitudinal (curl-free) part of the electric field and the electron 
current must be removed. The decoupling is accomplished by the requirement that 
part of the electron current be determined by the quasineutral continuity equation 

V . (Ji + J,) = 0 (1) 

which for suitable boundary conditions completely determines the longitudinal or 
curl-free part of the electron current from the ion current. Solving for the time- 
advanced longitudinal electron current directly from the advanced ion current thus 
obviates the need for using the longitudinal part of the electron momentum equation 
and the strong short-range coupling between longitudinal parts of the electron current 
and electric field is excluded. In one dimension this decoupling is easily implemented 
because of the fact that all divergence-free current is normal to the direction of 
variation and all curl-free current is along the direction of variation. 

A new technique is required to determine the longitudinal electric field (or equiva- 
lently the electrostatic potential) consistent with the quasineutral assumption. Exact 
charge neutrality would of course require the electrostatic field to be identically zero. 
Quasineutrality implies only that the difference between the ion and electron charge 
densities be everywhere small in a relative sense. In any equation in which the electron 
density n, appears, quasineutrality implies that the change introduced by substituting 
the ion density ni for n, is negligibly small. This condition is found in plasmas which 
exhibit macroscopic inhomogeneities and require long-range electrostatic potentials 
for consistency. Common examples include the radial implosion and containment of 
o-pinches and axial containment schemes for mirror devices requiring ambipolar 
potentials. As will be fully discussed later, a quasineutral “Poisson” equation can be 
obtained using only the quasineutral continuity Eq. (1) and the sum of the electron 
and ion momentum equations. The solution of the resulting elliptic equation of the 
form 

V.cPV#)=x (2) 

produces the required longitudinal electric fields consistent with the small X, assump- 
tion. 

A brief description of the ion particle-in-cell methodology is presented in Section 2. 
Section 3 presents the mathematical treatment of the electron fluid followed by a 
discussion of the quasineutral Darwin model field calculations in Section 4. Since the 
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main purpose of hybrid code development has been to model plasma phenomena on 
truly macroscopic time and length scales, Section 5 deals with the mechanisms through 
which the plasma model interacts with external influences. Finally, a two-dimensional 
comparison between full particle-in-cell and hybrid simulation techniques is presented 
in Section 6. The test case is a strongly inhomogeneous lower hybrid drift unstable 
equilibrium [ 181. 

2. IONS 

The ion component of the simulated plasma is modeled by representing the ion 
distribution with a discrete set of particles. Associated with each particle are a mass, a 
charge, two position coordinates, and three velocity coordinates. By initializing these 
particles in velocity and position with appropriate weight factors, arbitrary low-order 
velocity moments of the ion distribution can be represented. The ion distribution is 
advanced in time by stepping forward in time each particle under the influence of the 
local self-consistent Lorentz force using particle-in-cell techniques. Following Nielson 
and Lewis [ 151, the particle-stepping algorithm is based upon the following equations 
which are second-order accurate in the time step dt. Explicitly, 

yo = y-V + QjEO, 

vl/z = j--l!2 + h(E” + gB” + v” x BO), 

x1 = x0 + Lit v, 

(3) 

(4) 

(5) 

where h = q At/m, f = 1 - (+h2)(B0)2, and g = +h(v-li2 . B”)2. The accuracy of 
v1/2 and x1 is of order d t 2 so that the accumulated error is of order d t. At the end 
of each time step, the required velocity moments of the ion distribution are 
calculated by averaging over the new positions and velocities of the particles. 
Since the simulation model is to calculate the fields in the Darwin limit, the 
divergence Ki of the ion kinetic energy tensor is necessary in addition to the normally 
required density ni and current J, . Numerical details of this extension of the particle- 
in-cell technique can be found in the original reference of Nielson and Lewis. 

3. ELECTRON FLUID 

The electron component of the simulated plasma is considered to be a neutralizing 
thermal fluid. Consequently, the electron density n, is nearly indistinguishable from the 
newly obtained ion density yli and will be considered equal to ni to lowest order in 
expressions requiring n, . One consequence of this assumption is displayed by con- 
sidering the continuity equation, 

e -$ (ni - n,) + V . (Ji + J,) = 0, 
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where n, and n, are the ion and electron densities and Ji and J, are the ion and 
electron currents. Since ni is considered equal to n, , the continuity equation reduces to 

V-J, = -V.Ji. (7) 

To exploit the consequences of Eq. (7), the electron current J, is decomposed into 
longitudinal (irrotational) J,& and transverse (solenoidal) Jet parts. 

J, = Jet + Jet . (8) 

These two components are defined by 

V . Jet = V . J, , (9) 

V x J,z = 0, (10) 

V . Jet = 0, (11) 

V x Jet = V x J, . W) 

The subscript I will hereafter indicate the irrotational or curl-free component and the 
subscript t will denote the transverse or divergence-free component. The terms 
“longitudinal” and “transverse” have been used in the text to conform to standard 
usage. The reader is cautioned to avoid the confusion that often arises due to the 
connotation of direction associated with these terms. These terms denote vector 
properties; they can imply direction only in geometrically limited special cases. 

Since J,& is longitudinal, it may be obtained by taking the gradient of a scalar 
potential V, 

Jel = -VV, (13) 

where V is governed by a Poisson equation obtained by substituting Eq. (13) into 
Eq. (9). Combining this result with Eq. (7), the potential V is obtained from 

WV= V.Ji. (14) 

Equations (13) and (14) uniquely determine JeI when the appropriate boundary 
conditions on Vare given for Eq. (14). Boundary conditions are reviewed in Section 5. 
For purposes of the present discussion, periodic and/or Neumann (from a prescribed 
normal component of Jet) boundary conditions will suffice to provide a unique solu- 
tion. These procedures described by Eqs. (13) and (14) allow the longitudinal part of 
the electron current to be obtained from the ion current. The longitudinal electron 
current J,r therefore cannot exhibit faster temporal behavior that experienced by the 
ions (assuming the boundary conditions do not themselves vary on a faster time scale). 

The transverse part of the electron current is advanced explicitly in time by direct 
evaluation of the electron momentum equation 

ja = K, + 5 n,E + 4 J, x B + vei(Ji + J,), 
m,c (15) 
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where vei is the electron-ion collision frequency and K, is the divergence of the electron 
kinetic energy tensor 

K, = -qV . 
I 

vvJb d3ti (16) 

in which& is the electron distribution function. After calculation of the vector field 
j, , the transverse part Jet can be obtained by subtracting the longitudinal part 

iet = J, - i,z . (17) 

jet is determined by mathematical methods analogous to those used to find J,, . In 
effect, the methods reduce to 

iet = ie + VK (18) 

where 
vv = -v . je . (19) 

As before, external influences on the electron current must be considered when 
choosing the boundary conditions for V in Eq. (19). Knowledge of the normal 
component of jB1 on the boundaries of the simulation region is sufficient to determine 
uniquely the time rate of change of the vector Jet given je from Eq. (15). The implica- 
tions of this choice for boundary conditions of Eq. (19) are further discussed on 
Section 5. 

The time advance of Jet is accomplished as follows. First, the temporary vector 
J,,3 is defined by 

J =J" + Jn-712 
P\ 82 of . (20) 

Now the transverse current may be advanced by the two steps 

J,” = J,, + 0.5dt %OLn, non, En, J,, , Wit , (21) 

J n+112 er = J;7 -t At [je(Ke", nrn> En, Jen, Wit (22) 

in which each evaluation of ie is obtained from Eq. (15). The superscript IZ refers to 
the relative position in time of the quantities. This scheme is second-order accurate in 
dt; Eq. (21) advances the transverse part of the electron current the additional one- 
half time step required so that the result of Eq. (21) is the total electron current at 
time n. Use of this current to evaluate the current time derivative in Eq. (22) produces 
second-order accuracy by virture of time centering. 

Equation (22) has proven to be sensitive to details of differencing. Relatively 
straightforward differencing leads to a slowly growing alternate-cell (Lax-type) 
instability which causes diffusion of the gradients in the problem. By applying diagonal 
cell averaging of the longitudinal electric field prior to its use in Eq. (22), the diffusion 
has been substantially reduced. Further study of the cause and correction of this 
numerical instability is needed. 
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From the discussion following Eq. (14), it is apparent that the characteristic time 
scales of Jet are the same as that of the ions. This result is consistent with and required 
by quasineutrality. The characteristic time scales for J,, are also not in any way 
affected by electron plasma oscillations because the interaction of El and JeI has been 
excluded except indirectly through the ion motion. By deducing the electrostatic 
field from a quasineutral Poisson equation (as described in the following section) 
electron plasma oscillation variations in the electrostatic field are suppressed. Electron 
inertia is retained in the transverse part of the electron current and, consequently, any 
phenomenon that requires a finite mass ratio miJm, and that does not require un- 
balanced charge is still included in this model. Retention of the electron mass in the 
transverse component does necessitate following electron cyclotron motion when there 
is a component of the magnetic field in the simulation plane (see appendix). For high-/3 
plasmas, this is not a major restriction and is in fact required for some problems of 
present interest. 

In addition to the fields, density, and currents, the evaluation of ie using Eq. (15) 
requires the divergence K, of the electron kinetic energy tensor given by Eq. (16). For 
this purpose, the electron distribution shall be assumed to have the following form: 

fe(x, y, v, t) = (+)-3’z n, exp (-“$- “‘)‘), 
e 

where the density n, , the electron drift velocity u, , and the isotropic electron tem- 
perature T, are functions of both position and time [19]. Thus, the velocity dependence 
of the electrons can be no more complicated than a drifting Maxwellian of arbitrary 
width. This assumption is equivalent to an equation of state for the electron fluid; 
it closes the set of moment equations needed to describe the electrons. The expression 
for K, found by substituting Eq. (23) into Eq. (16) is 

K, = -qV. 
FlT 

AI+-NUU 
me 

e e 1 e 2 (24) 

where I is the identity tensor and u,u, is a dyadic. 
The electron temperature T, necessary for the evaluation of Eq. (24) is advanced in 

time by direct application of the thermodynamic relation for the specific entropy s [20], 

ds 1 4 
2i=-- n,T, dt 

in which dq/dt is the heat production rate per cell, the most often used example being 
Ohmic heating dq/dt = 7J2. The specific entropy of the electron distribution given by 
Eq. (23) is 

s = 01 - ln(n,T;3’2), (26) 

58 I /29/z-6 
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where 01 is a constant. Combining Eqs. (25) and (26), the relation giving the time rate 
of change of T, is 

aT, Te -=- 
at 3 V - u, - V * We) + $ [g + CR], (27) 

where R is a source term for electrons representing the net rate at which electrons are 
generated or introduced. 

It should be noted that naive numerical differencing in Eqs. (24) and (27) can 
possibly result in an unsatisfactory algorithm [21-231. Numerical evaluation of 
expressions of the form V . (UC), where 5 is a scalar function of position, is accom- 
plished by a combination of conservative full donor cell [21] and interpolated donor 
cell [24] differencing, typically 20 and 80 %, respectively. 

4. FIELD CALCULATIONS 

The field calculations generate the self-consistent electric and magnetic fields in the 
radiation-free limit [15]. This limit is achieved by solving the following equations: 

V * E, = 4ne(ni - n,), V x E, = 0, 

V * E, = 0, 

V*B=O, 

1 aB 
VXE,=-;~, 

VxB=%J+:eE, 
C c at 

in which the electric field has been decomposed into longitudinal El and transverse 
Et parts in the same manner as the electron current was decomposed in Eq. (8). The 
set of Eqs. (28) differs from Maxwell’s equations only in that the transverse part of the 
displacement current aE,/at has been neglected. Working in the Coulomb gauge, 
Eqs. (28) may be expressed in terms of the scalar and vector potentials, 4 and A, 
respectively, as 

V24 = -&re(ni - n,), (29) 

V-A = -(47r/c) Jt , (30) 

V2Et = (b/c3 it , (31) 

where 
B=VxA (32) 

and 
El = -V+ (33) 

The relation Et = -(l/c)A is not required in this formulation of the field equations 
although it has been used in obtaining Eq. (31). The use of the quantity J, in Eq. (30) 
for J + (l/c) aE,/& requires that the boundary condition used in determining the 
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transverse part of a vector field be the same as that desired for aE,/at. Such has been 
the case in the present work where simple periodic and Neumann boundary conditions 
are used. More general boundary conditions would require that special care be taken 
to insure consistency in this respect. 

The fundamental difference between the field calculations used here and those 
documented by Nielson and Lewis [15] is that Eq. (29) cannot be used to find the 
scalar potential in the quasineutral limit. An alternative method for determining 4 
can be found by summing the electron and ion momentum equations [16, 171. The 
resulting equation is 

where 

(4.1rlc2)(ji + iJ = (D + 4% + Et) + g x W, (34) 

(37) 

and K, is the divergence of the ion kinetic energy tensor, the ion counterpart of 
Eq. (16), accumulated in the ion particle advancing section of the model. Taking the 
divergence of both sides of Eq. (34) and solving for pE, gives 

V.(I”V~)==.(D+~E,+~XB) (38) 

in which the definition given by Eq. (33) is used. In deriving Eq. (38), use has been 
made of the fact that the divergence of the left side of Eq. (34) vanishes as a result of 
quasineutrality, a consequence easily understood by taking the time derivative of 
Eq. (7). 

Equation (38) serves the same purpose for the quasineutral hybrid model as 
Poisson’s equation serves for other models not requiring quasineutrality. In particular, 
since p as defined by Eq. (35) is completely determined by the ion density, Eq. (38) 
and suitable boundary conditions uniquely determine the electrostatic potential 
throughout the simulation region. The solution can be obtained by any one of 
several elliptic equation solution methods; the present choice is an alternating direction 
implicit method due to Miller [25]. 

The magnetic field calculation, accomplished by solving Eqs. (30) and (32), presents 
no major difficulties. With proper application of boundary conditions on the vector 
potential (see Section 5) any externally applied magnetic field can be modeled. 
Additionally, boundary conditions must be specified in order to obtain the transverse 
part of the total current needed for the right-hand side of Eq. (30). This is accomplished 
for the total current, as it is for the time derivative of the electron current in Eq. (17), 
by subtraction of the longitudinal part. The decomposition is obtained from 

Jt = J+ VI’, (39) 
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where 
vv= -V*J (4) 

in which the boundary conditions on V are determined by specifying the normal 
component of J, on the simulation boundaries as discussed in the next section. 

The Et calculation is somewhat more complicated than the preceding calculation of 
the magnetic field. It has been demonstrated that the calculation of E, needs to be 
fully implicit in time [15] since this model exhibits instantaneous propagation. To 
avoid finite differencing in time, it is therefore necessary to obtain the time derivative 
of the total current by summing the ion and electron momentum equations which 
results in 

477j = D + p(Et + Et) + 5 x B, (41) 

where p, 5, and D are defined by Eqs. (39, (36), and (37), respectively. Obtaining 
jet from i, is accomplished using the same procedure used for the right-hand side of 
the vector potential calculation Eq. (30) namely, by subtracting off the longitudinal 
part. This is expressed by 

47rjt = 47r(j - j,) = 4Tr(j + WV) 

for which V is generated by 

(42) 

v2v = -v. J (43) 

with the boundary conditions on V determined by specifying the normal component 
of i on the simulation boundaries. Since the right-hand side requires an explicit 
expression of Et , a fully implicit calculation of E, requires iteration. To this end, the 
rapidly converging iteration scheme described by Nielson and Lewis [15] is imple- 
mented to provide the solution to Eq. (31). 

One additional complication is that the quasineutral Poisson equation, Eq. (38), 
requires E, as a source term and the equation for Et , Eq. (31) with source given by 
Eq. (42), requires El as a source term. A fully implicit solution requires, therefore, 
iteration over both El and Et calculations. In practice, the code runs stably with two or 
three iterations over both El and EC calculations. 

5. BOUNDARY CONDITIONS 

As indicated in Section 1, hybrid simulation methods are expected to model not 
only strongly inhomogeneous macroscopic plasma properties but also the plasma 
interaction with the geometric configuration of the plasma vessel and/or external 
fields. Therefore some discussion of the mechanisms through which the simulated 
plasma interacts with its environment are in order. Obviously this section cannot be 
complete because of the extreme problem dependence of these issues. An attempt is 
made only to identify those mechanisms though which the model may interact with 
external influences. 

The initialization of the plasma representation must specify a major part of the 
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desired geometric configuration. In addition to all the boundary conditions required 
at any other time, the initialization also requires specifying the initial position and 
velocity of each ion as well as the two-dimensional spatial dependence of the electron 
temperature T, and each component of the electron transverse current Jet. To com- 
plete the initialization, the self-consistent fields and the longitudinal electron current 
Jel need to be constructed. The boundary conditions required to accomplish these 
tasks are also required on all successive time steps. 

The required boundary conditions model external interactions of three types: 
the explicit boundary conditions applied to field solutions, the treatment of ion 
simulation particles when they strike a boundary, and the specification of electron 
current boundary conditions in the various electron advance equations. 

The electromagnetic field and ion simulation particle boundary conditions are 
relatively straightforward and are handled in a manner quite similar to that used in 
full-particle simulations. The fields at the boundary presumably represent imposed 
external fields which are approximated in some convenient way. In the present work 
the conditions used are periodic in y and Neumann in X. The treatment of the ion 
simulation particles at a boundary is usually a substitute for using a larger simulation 
region. For example, particles may be absorbed, reflected, or reemitted with some new 
velocity distribution. The choice for the present work is perfect reflection. 

The boundary condition on the electron current components may need to reflect 
the fact that external currents flow through the simulation region. A transverse or 
divergence-free contribution to the electron current from external effects can appear 
in two ways. The first is by means of the initial value of J,$ (which is not a true 
boundary condition), while the second is a possibly time-varying boundary condition 
on the jet calculation described by Eqs. (18) and (19). The boundary condition 
needed for this calculation is the time derivative of the normal component of j&r on 
the simulation surface, which is obtained by taking the derivative with respect to time 
of the boundary condition on Jet already specified for Eq. (14). 

Finally, the boundary conditions required to construct the right-hand sides of the 
elliptic equations for A and E, , Eqs. (30) and (31), respectively, require the same 
vector decomposition procedures. The difference is that the source terms that must 
now be decomposed are the sum of the electron and ion currents. These boundary 
conditions are in fact specified by those already imposed on the electron current 
solutions in Eqs. (14) and (19) and on the ion current by the particle boundary 
algorithm. 

The constraints that must be considered when applying these boundary conditions 
are that since the divergence of the quantities JZ , jr, J,r , jel, B, E, , and Et are all 
zero or assumed small, the surface integral 

I F - ds 
s (44 

must vanish where F is any one of these quantities. The interpretation is obvious: 
in this model, there can be no net source or sink for any current, electric field, or 
magnetic field within the simulation region. 
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6. RESULTS 

One-dimensional tests of the model provided initial verifications that selected 
physical phenomena could be represented by this model [16]. However, one-dimen- 
sional calculations with this model, indeed any nonradiative Darwin model, are 
considerably simpler than calculations in two or more dimensions. The relative 
simplicity in one dimension is due to the ease with which vectors can be decomposed 
into longitudinal and transverse components when gradients are allowed in only one 
direction. In two or more dimensions, more general techniques are always required 
for vector decomposition. The techniques described in preceding sections have 
succeeded to the extent that good agreement between this hybrid model and a conven- 
tional particle-in-cell model (particle ions and particle electrons) has been obtained 
for strongly inhomogeneous two-dimensional plasma simulations. The test problem 
used for this comparision is the temporal evolution of the lower-hybrid-drift (LHD) 
unstable equilibrium [17, 181. 

“;jj$cJ o;yjq 
X IO 0 

X 
IO 

(0) (b) 

b.3 

-o.~~ q Ex “ey 

0 
0 X ‘IO 0 X IO 

(cl Cd) 

FIG. 1. Profiles of the unstable Vlasov equilibrium used to initialize the two simulations for 
0 < x < 10~0;:. The equilibrium is homogeneous in y. Shown as a function of x are (a) the ion 
density nj , electron density n, , and the z component of the magnetic field B, , (b) the y component 
of the electron current J,, , (c) the electrostatic field E,, and (d) the electron drift velocity u,, . The 
densities are normalized to unity at x = 0, while the electric and magnetic fields are measured in 
units of m,w,.c/e. 

The LHD unstable equilibrium [26] chosen for the initialization has features 
suitable for both types of simulation. The equilibrium must have a sufficiently narrow 
sheath region to insure a substantial LHD growth rate so that the instability can be 
clearly distinguished from the inherent noise of particle methods. However, the sheath 
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must not be so thin as to require deviations from charge neutrality which tax the 
quasineutral assumption of this hybrid model. The Vlasov equilibrium [26] used to 
initiate the full-particle simulation in this study is shown in Fig. 1. The deviation from 
charge neutrality can be expressed, using Poisson’s equation, by noting that 

for 0 < x < xmax and that the extreme value of this relation occurs only in a small 
localized region. The temporal evolution of the LHD instability using the full-particle 
code is best displayed by the B, contours shown in Fig. 2 which clearly show the 
development of flute structures. The wavelength of these flutes is on the order of 
five electron gyroradii and the growth time is approximately lOOw;;,l. 

(a) 

Wt;I:--mm 

I I 
T=50 T= 100 T=150 T=200 

FIG. 2. Full-particle simulation of the time evolution of the magnetic field component B, starting 
from the equilibrium shown in Fig. 1. The x-y contours of B, for 0 < x < locw;,, and 0 < y < 
20~;: are shown in (a), while the y-averaged profile of B, is shown in (b). 

The equilibrium for the hybrid code is deduced from the Vlasov equilibrium 
shown in Fig. 1 by setting n, = rzi . This is mathematically equivalent to assuming 
dE,ldx is small compared to ni . This assumption also modifies the pressure balance 
relation used to obtain B, , in effect expressing the fact that the EG2 energy is much 
smaller than other energies such as Bz2, n,T, , or n,T, . The result is a mathematically 
exact hybrid equilibrium which corresponds more and more closely to the Vlasov 
equilibrium as the sheath becomes broader and consequently dE,ldx goes to zero. The 
temporal evolution of the B, contours of this equilibrium as given by the two-dimen- 
sional hybrid code QN2 is shown in Fig. 3. 

Comparing Figs. 2 and 3, it is apparent that both the growth rate and wavelength 
are nearly the same. Such agreement between the two techniques in this strongly 
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inhomogeneous configuration with nontrivial two-dimensional effects demonstrates, 
at a minimum, that the physical effects required for this instability are still present 
in the new model. In addition, with the initial plasma gradients requiring such a 
significant E, to maintain equilibrium, it is interesting to note that the quasineutral 
Poisson equation, Eq. (38), produces substantially the same E, for the hybrid code as 
does the true Poisson equation for the full-particle code. The enhanced diffusion, 
evident in the low density region in the hybrid run (Fig. (3)), is presently under 
investigation. Preliminary indications are that the difficulty is related to the exact 
form of the differencing scheme for Eqs. (21) and (22) and to the excessive fluctuations 
caused by a very small number of simulation particles in the low density region. 

(a) 

(b) 

T=50 T=lOO T=l50 T=200 

FIG. 3. Hybrid simultations of the time evolution of B, with all parameters the same as the full- 
particle simulation shown in Fig. 2. Comparison of the results of the two simulation techniques 
reveals very similar wavelength and growth rate for the developing flutes. 

No attempt has been made in these two-dimension tests to exploit the larger time 
step capability of the hybrid model; the primary purpose of the work presented here 
is to demonstrate agreement between the full particle-in-cell model and the hybrid 
model. An inhomogeneous equilibrium has been selected with properties which are 
appropriate for the comparison. Consequently, in these comparison runs the equilib- 
rium electron drift velocity is sufficiently large that the limiting factor on the time 
step is dt < dy/uGy since flow must be less than one cell per time step. 

For the comparisons given here the particle-in-cell results (Fig. 2) were obtained 
with dt = 0.20;:, 12 800 each of ions and electrons, 32 cells in both x and y with 
0 < x < lOc/w,, and 0 < y < 2Oc/w,, . The hybrid results (Fig. 3) were obtained 
with dt = 0.5~;: and 12 800 ions. The cell sizes and numbers as well as the equilibri- 
um parameters were the same. In both cases the magnetic field B, in units of mewpec/e 
is about 0.7 in the low density region. 
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7. CONCLUSION 

A quasineutral hybrid model has been presented which combines a full kinetic 
treatment of the ions with a fluid treatment of the electrons. The model retains 
electron gyromotion effects while excluding electron plasma oscillations. The most 
significant new feature of the model is a quasineutral Poisson equation which deter- 
mines the electrostatic field. A two-dimensional code QN2 has been written to imple- 
ment this model; one- and two-dimensional tests with this code have verified all 
essential features of the model. Further numerical refinements will allow application 
to a wide range of physically important problems. 

APPENDIX 

The simulation model presented in this paper is designed to ignore some higher- 
frequency electron plasma phenomena such as plasma oscillations and upper hybrid 
waves while retaining other finite electron mass effects such as lower hybrid waves. 
The numerical techniques required to accomplish these ends were developed in a 
somewhat heuristic and empirical manner. It is desirable to have a more precise 
demonstration of which plasma phenomena are and are not retained in this relatively 
complex model. The full multidimensional model contains many more terms than 
can be readily analyzed. However, indications of the time scales important to this 
model can be obtained by eliminating some of the variables and restricting the 
dimensionality. 

In the analysis which follows, it is assumed that T, = Ti = T (= const), resistivity 
is zero, the model has spatial variation in only one direction (k = keJ, and the plasma 
under consideration has no zeroth-order gradients (and therefore no zeroth-order 
drift velocities in either ions or electrons). The basic equations for the electron fluid 
and the Darwin fields are Eqs. (13)-(31), and (35). The ions can be adequately 
represented for present purposes by the first two velocity moments. Equations 
governing the first-order magnetic field components are unnecessary for linear analysis 
in the limit of vanishing zeroth-order gradients. After linearization and assuming all 
first-order quantities have the usual exp(ikx + iot) space and time dependences, the 
following equations form the basis of the linear dispersion relations which will be 
developed. 

wn = -kn,q,, (Al) 
U,, = Uir 3 WI 

643) ( iwu, = - e E - u, x 
m, 

a,, 
1 

x e, , 

( iwu, = $- E + ui x w,, 

hi - A) 

) 
x e, , 

he 
-pE, = c2 [ik 

mime 
nT + n&i x wci + u, x wc,) * e, 1 , 645) 
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--k2E = /.& + q %(Ui X wci + u, X Oce) 1 x e, , G46) 

6 wcj = G2 .j = particle type. 
3 

The density n, and the magnetic field B, are the only nonvanishing zeroth-order 
quantities. p is given by Eq. (35). 

First, waves propagating perpendicular to the zeroth-order magnetic field B, = 
B,e, are considered. Hence, uCe = w,,e, , wCi = wCie, which for this problem 
implies k * B, = 0 and after some algebra, all variables except the electric field 
components are eliminated. Setting the determinant of coefficients to zero to find 
nontrivial solutions, it is found that 

co2 = WceWci 
c2k2 

+ c 2k2 mi - m, 
c2k2 + coti + w2ps ’ mi i- m, 

and 
c2k2 + w2,, + w”,~ = 0, (‘49) 

where cs2 is the ion sound velocity squared given by 

cs2 = T/mi . (AlO) 

Equation (A9) simply represents the evanescent transverse wave which is a conse- 
quence of the Darwin model. In this case (B,e, and ke,), it arises from the decay of 
E, with x. In the limit of mi > m, and oEe > c2k2, Eq. (A8) becomes 

2 
w2 = w,i ‘ak2 + c,2k2 

4i 
(All) 

which in terms of the Alfvtn velocity (va2 = B,,2/(4nn,mi)) is the familiar 

co2 = (ua2 + c,2) k2. 6412) 

Thus for k - B, = 0, there are no remaining electron high-frequency phenomena on 
length scales much greater than C/C+,, assuming realistic mass ratios. The only waves 
present in this limit are Alfvkn and ion accoustic modes. 

Now consider waves propagating parallel to the zeroth-order magnetic field. The 
one-dimensional spatial variation is still considered to be the x-direction but the 
external B field is now given as B, = Boer so that w,, = Wceez and wCi = W,$e, imply- 
ing k * BO # 0. Substituting these parameters into Eqs. (Al)-(A7) and eliminating 
variables until only the electric field components remain, the coefficient of the un- 
knowns is again set to zero to find nontrivial solutions. The result is 

= 0 (A13) 
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for circularly polarized transverse waves (k * E = 0) and 

(g = tmi - me) c 2k2 (4 + m,) ’ (A14) 

for longitudinal waves (k . E # 0). In the limit of mi > m, and for frequencies 
w > wCi, Eqs. (A13) and (A14) become 

c 2 
w = *to,, 1 - WPe 

C2k2 + oJze 1 ’ 

J = c 2k2 s . (Al 6) 

Therefore, this model retains electron cyclotron oscillations for those mode com- 
ponents for which k * B # 0. 

In the numerical simulation model, care must be taken to keep dt a small fraction 
of the inverse of the highest frequency expected. Studies with the coded version 
of this model verify that, as long as there are no components of B in the two- 
dimensional simulation plane, the absolute stability limit on the magnitude of dt 
is given by fit < 1.3/(~~~0~,,)~~~. When there is a component of B in the plane of 
simulation, the upper bound on dt is reduced to dt < 1.6/w,, where w,, is given by 
Eq. (A7) evaluated by substituting for B the value of (k . B)/k. 
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